3.597 \(\int \frac{(a+b \sec (c+d x))^3}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=156 \[ \frac{2 b \left (a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{d}+\frac{6 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{8 a^2 b \sin (c+d x)}{5 d \sqrt{\sec (c+d x)}} \]

[Out]

(6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*b*(a^2 + b^2)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*b*Sin[c + d*x])/(5*d*Sqrt[Sec[c + d
*x]]) + (2*a^2*(a + b*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.192798, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3841, 4047, 3771, 2639, 4045, 2641} \[ \frac{2 b \left (a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{6 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{8 a^2 b \sin (c+d x)}{5 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^3/Sec[c + d*x]^(5/2),x]

[Out]

(6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*b*(a^2 + b^2)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*b*Sin[c + d*x])/(5*d*Sqrt[Sec[c + d
*x]]) + (2*a^2*(a + b*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^3}{\sec ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2}{5} \int \frac{6 a^2 b+\frac{3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac{1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2}{5} \int \frac{6 a^2 b+\frac{1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx+\frac{1}{5} \left (3 a \left (a^2+5 b^2\right )\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{8 a^2 b \sin (c+d x)}{5 d \sqrt{\sec (c+d x)}}+\frac{2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\left (b \left (a^2+b^2\right )\right ) \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{5} \left (3 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{6 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{8 a^2 b \sin (c+d x)}{5 d \sqrt{\sec (c+d x)}}+\frac{2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\left (b \left (a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{6 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 b \left (a^2+b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{8 a^2 b \sin (c+d x)}{5 d \sqrt{\sec (c+d x)}}+\frac{2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 0.443125, size = 106, normalized size = 0.68 \[ \frac{\sqrt{\sec (c+d x)} \left (10 b \left (a^2+b^2\right ) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+6 a \left (a^2+5 b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+a^2 \sin (2 (c+d x)) (a \cos (c+d x)+5 b)\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^3/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 10*b*(a^2 + b^2)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2] + a^2*(5*b + a*Cos[c + d*x])*Sin[2*(c + d*x)]))/(5*d)

________________________________________________________________________________________

Maple [A]  time = 1.528, size = 376, normalized size = 2.4 \begin{align*} -{\frac{2}{5\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -8\,{a}^{3}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 8\,{a}^{3}+20\,{a}^{2}b \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -2\,{a}^{3}-10\,{a}^{2}b \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +5\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}b+5\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{3}-3\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{3}-15\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a{b}^{2} \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(
8*a^3+20*a^2*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-2*a^3-10*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2
*c)+5*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*
b+5*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^3-3*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-15*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}{\sec \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \sec{\left (c + d x \right )}\right )^{3}}{\sec ^{\frac{5}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**3/sec(d*x+c)**(5/2),x)

[Out]

Integral((a + b*sec(c + d*x))**3/sec(c + d*x)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)